Balanced pig breeding for improved global sustainability

The ongoing focus on global climate change and potential solutions has never been more explicit nor pertinent than it is today. Increasingly extreme weather conditions are being recorded all over the world, and the amount of scientific evidence for the global effects of greenhouse gases on the environment is increasing.

by Dr Helle Palmø, Chief Geneticist, DanBred, Denmark.
www.danbred.com

Animal husbandry, including pig production, has been drawn into question due to its carbon footprint as well as the pollution of drinking water supplies from the fertilisers and pesticides used in the production of animal feed.

In the future, pork must therefore compete with other types of meat that are thought to be more sustainable, including poultry as well as insect and laboratory meat products. Consequently, improving the sustainability of pork is necessary to ensure that pig production can continue in the future.

Sustainable pork production will simultaneously also address several of the United Nation Sustainable Development Goals, for example, ‘No. 2: Zero Hunger’, ‘No. 3: Good Health and Well-Being’, ‘No. 12: Responsible Consumption and Production’, and ‘No. 13: Climate Action’.

This is important because the rapid increase in pork consumption and production is expected to continue for a long time to come due to population growth and a reduction in poverty.

Even if large parts of the western world see a reduction in meat consumption per capita, the Food and Agriculture Organization of the United Nations predicts that global consumption will increase, driven by middle-income countries such as China and Brazil.

Therefore, the question is: How can pig breeding and genetics contribute to a more sustainable production of pork in the future? Breeding programmes aiming to achieve genetic gain to produce more while using fewer resources is key to achieving this goal.

Genetic selection for sustainability

Genetic selection is a tool perfectly suited to improving sustainability. Firstly, because the key breeding goal of most commercial pig breeding programmes is to produce more using fewer resources, and secondly because any genetic improvements made are cumulative and mostly permanent.

Genetic selection for feed conversion, growth, litter size, and survival all result in reduced feed consumption or waste – which in turn results in reductions in the emission of nutrients such as nitrogen and phosphorus as well as greenhouse gases such as methane and CO₂.

Improved feed conversion reduces CO₂ emissions and improves availability

When feed conversion is improved, the individual pig will consume less feed before it is slaughtered. As a result, it is possible to produce the same amount of pork for less feed, or more pork for the same amount of feed.

The former will most likely reduce the price of pork through lowering costs, whereas the latter will reduce the price of pork through an increased supply-demand ratio, even in the face of a growing population. In both cases, there is potential to reduce the relative environmental impact and increase middle-income countries such as China and Brazil.

Therefore, the question is: How can pig breeding and genetics contribute to a more sustainable production of pork in the future? Breeding programmes aiming to achieve genetic gain to produce more while using fewer resources is key to achieving this goal.

Genetic selection for sustainability

Genetic selection is a tool perfectly suited to improving sustainability. Firstly, because the key breeding goal of most commercial pig breeding programmes is to produce more using fewer resources, and secondly because any genetic improvements made are cumulative and mostly permanent.

Genetic selection for feed conversion, growth, litter size, and survival all result in reduced feed consumption or waste – which in turn results in reductions in the emission of nutrients such as nitrogen and phosphorus as well as greenhouse gases such as methane and CO₂.

Improved feed conversion reduces CO₂ emissions and improves availability

When feed conversion is improved, the individual pig will consume less feed before it is slaughtered. As a result, it is possible to produce the same amount of pork for less feed, or more pork for the same amount of feed.

The former will most likely reduce the price of pork through lowering costs, whereas the latter will reduce the price of pork through an increased supply-demand ratio, even in the face of a growing population. In both cases, there is potential to reduce the relative environmental impact and increase

Continued on page 8
breeding programmes are indirectly selecting for sustainability.

More sustainable production

Contributing to a more sustainable production in the future is a fundamental premise for DanBred’s balanced pig breeding programme. DanBred exports genetics to customers all over the world and is one of the few genetics companies allowed to export live animals to China.

It is generally believed that Chinese swine production has been reduced by 40-60% due to African Swine Fever (ASF), and large Chinese pig farm enterprises are, therefore, looking to restock their farms.

This very unfortunate situation may, however, lead to a more sustainable pig production in the future, due to the fact that the import of new DanBred breeding stock will markedly increase the genetic level and overall performance of both sows and finishers.

For example, the new DanBred breeding stock in China produces 10-13 more pigs per sow per year than the previous gilts and sows. This will contribute to lowering the carbon footprint from Chinese pig production similar to developments in Denmark.

The genetic progress in the DanBred breeding programme is a primary cause of the approximately 26% reduction in CO₂ emissions from Danish pig production seen during the period 2005-2016. This reduction can largely be ascribed to the genetic progress achieved for feed efficiency, and similar concurrent benefits are expected as China restocks with DanBred’s genetics.

Genetic gain in feed efficiency

Fig. 1 on the previous page illustrates the genetic gain in feed efficiency in the DanBred breeds, and shows that in 10 years, the genetic potential for feed efficiency has improved by almost 0.4kg feed/kg growth, with the largest improvement seen in the sire line DanBred Duroc.

Further improvements can also be expected due to future exploitation of genetic variation, with no indication that this variation will be depleted any time soon.

For example, at the Boar Test Station of the DanBred breeding programme in 2018, the top 25% and the top 10% of boars had a feed efficiency of 193 and 188, respectively, compared to the average of 2.06. These differences reflect the potential for genetic progress in feed efficiency over the next 10 years.

Genetic gain in litter size

Fig. 2 illustrates the genetic gain in litter size at day five in the DanBred dam breeds. It shows that in just 10 years, the genetic potential for litter size at day five has increased by three live piglets. This is also partly reflected in reduced piglet mortality (including stillborn piglets), with a reduction of up to eight percentage points since 2004 in the DanBred nucleus and multiplier farms.

In the future, a further increase in litter size and a reduction in mortality can also be expected. As a result, there is plenty of scope for pork to become even more sustainable in the future.